Tissue engineering rib with the incorporation of biodegradable polymer cage and BMSCs/decalcified bone: an experimental study in a canine model
نویسندگان
چکیده
BACKGROUND The reconstruction of large bone defects, including rib defects, remains a challenge for surgeons. In this study, we used biodegradable polydioxanone (PDO) cages to tissue engineer ribs for the reconstruction of 4cm-long costal defects. METHODS PDO sutures were used to weave 6cm long and 1cm diameter cages. Demineralized bone matrix (DBM) which is a xenograft was molded into cuboids and seeded with second passage bone marrow mesenchymal stem cells (BMSCs) that had been osteogenically induced. Two DBM cuboids seeded with BMSCs were put into the PDO cage and used to reconstruct the costal defects. Radiographic examination including 3D reconstruction, histologic examination and mechanical test was performed after 24 postoperative weeks. RESULTS All the experimental subjects survived. In all groups, the PDO cage had completely degraded after 24 weeks and been replaced by fibrous tissue. Better shape and radian were achieved in PDO cages filled with DBM and BMSCs than in the other two groups (cages alone, or cages filled with acellular DBM cuboids). When the repaired ribs were subjected to an outer force, the ribs in the PDO cage/DBMs/BMSCs group kept their original shape while ribs in the other two groups deformed. In the PDO cage/DBMs/BMSCs groups, we also observed bony union at all the construct interfaces while there was no bony union observed in the other two groups. This result was also confirmed by radiographic and histologic examination. CONCLUSIONS This study demonstrates that biodegradable PDO cage in combination with two short BMSCs/DBM cuboids can repair large rib defects. The satisfactory repair rate suggests that this might be a feasible approach for large bone repair.
منابع مشابه
Investigation of osteoblast-like cells cultured on nano-hydroxyapatite/chitosan based composite scaffold in the treatment of bone defects and limited mobility
Objective(s): Design and construction of biocompatible and biodegradable scaffolds are among the main goals of tissue engineering. Recently, use of nano-hydroxyapatite as a bioactive bioceramic agent with high similarity to the mineral phase of the human bone tissue, in combination with biodegradable polymers and implant coatings has attracted the attention of researchers in the field of biomat...
متن کاملPresentation of a novel model of chitosan- polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects
Objective(s):Various methods for repairing bone defects are presented. Cell therapy is one of these methods. Bone marrow stromal cells (BMSCs) seem to be suitable for this purpose. On the other hand, lots of biomaterials are used to improve and repair the defect in the body, so in this study we tried to produce a similar structure to the bone by the chitosan and hydroxyapatite. Materials and Me...
متن کاملبررسی زیست سازگاری نانوالیاف الکتروریسی شده بر پایه کیتوسان در همکشتی با سلولهای استرومایی مغز استخوان (BMSCs)
Background and Objective: Several studies have been performed to achieve a scaffold for growing stem cells. The purpose of the study was to provide a biodegradable scaffold of chitosan - poly ethylene oxide (PEO) with the ability for growing, proliferation, un-differentiation and apoptosis of bone marrow stromal cells (BMSCs). Materials and Methods: First, formation of chitosan-PEO nanof...
متن کاملThe Bone-Forming Effects of HIF-1α-Transduced BMSCs Promote Osseointegration with Dental Implant in Canine Mandible
The presence of insufficient bone volume remains a major clinical problem for dental implant placement to restore the oral function. Gene-transduced stem cells provide a promising approach for inducing bone regeneration and enhancing osseointegration in dental implants with tissue engineering technology. Our previous studies have demonstrated that the hypoxia-inducible factor-1α (HIF-1α) promot...
متن کاملPoly (lactic-co-glycolic)/nanostructured merwinite porous composites for bone tissue engineering: II. structural and in vitro characterization
Several characteristics of a novel PLGA/Merwinite scaffold were examined in the present study to evaluate the possible applications in bone tissue regeneration. Physical and mechanical properties, as well as degradation behavior and in vitro bioactivity of porous scaffolds produced by solvent casting and particle leaching technique were also characterized. Results showed that incorporation of m...
متن کامل